
2009-1-(5): Manuscript for presentation at IPSJ-SIGPRO, 8 June 2009. 1

Regular Paper

Decidability and Undecidability Results

of Modal µ-calculi with N1 Semantics

Alexis Goyet,†1 Masami Hagiya†2

and Yoshinori Tanabe†2

In our previous study, we defined the semantics of modal µ-calculus on min-
plus algebra N∞ and developed a model-checking algorithm. N∞ is the set of
all natural numbers and infinity (∞), and has two operations min and plus. In
the semantics, disjunctions are interpreted by min and conjunctions by plus.
This semantics allows interesting properties of a Kripke structure, such as the
shortest path to some state or the number of states that satisfy a specified
condition, to be expressed using simple formulae. In this study, we investigate
the satisfiability problem in N∞ semantics and prove decidability and unde-
cidability results. First, the problem is decidable if the logic does not contain
the implication operator. We prove this result by defining a translation tr(φ)
of formula φ such that the satisfiability of φ in N∞ semantics is equivalent to
that of tr(φ) in ordinary semantics. Second, the satisfiability problem becomes
undecidable if the logic contains the implication operator.

1. Introduction

Modal µ-calculus, which uses fixed-point operators, can express various proper-
ties of Kripke structures, such as reachability and the existence of infinite paths,
both accurately and simply.6)

To enhance the expressiveness of this modal logic, attempts have been made to
define semantics that interpret formulae on algebra using richer structures than
those used in ordinary semantics (i.e., interpreting formulae as true or false).

For example, to formalize multiplexed model-checking, Nishizawa et al. in-
vestigated the simulation relation and the relationship between state and path
formulae on extended Kripke structures that assign elements of complete Heyting

†1 Ecole Normale Supérieure
†2 University of Tokyo

algebra as truth values to propositions and transition relations rather than using
ordinary Boolean algebra {0, 1}.5)

We have proposed semantics of modal µ-calculus that interpret disjunctions by
min and conjunctions by plus.4) Using plus, it is possible to compute or count
quantitative measures. To apply this to algebra, we adopted min-plus algebra,
algebraic structures with two binary operators, min and plus. Their algebraic
properties have been extensively studied and they were applied to solve problems
in formal language theory, such as finite power property problem.12) They are also
widely used to analyze discrete event systems, optimization, etc.2) An algebraic
structure with the following properties is called a dioid:
• min is associative and commutative,
• plus is associative and distributes over min,
• ∞ is zero element with respect to min,
• zero element ∞ is absorptive with respect to plus,
• plus has unit element 0, and
• min is idempotent.

In addition, if
• plus is commutative,

then it is called a commutative dioid. The algebra N∞ that consists of all
natural numbers N, including 0 and infinity ∞ is a commutative dioid. We
interpret modal logic formulae on this algebra N∞. A dioid is also known as
an idempotent semiring; it satisfies the requirements for a ring except for the
existence of inverse elements with respect to min. The algebra that consists of
all real numbers (or all integers) and infinity ∞ is an idempotent commutative
semifield; inverse elements with respect to plus exist except for ∞.

We interpret disjunctions by min and conjunctions by plus, so the typical ele-
ment that represents truth in N∞ is 0, and ∞ represents falsity. Finite elements
other than 0 also represent truth, i.e., there are various levels of truth.

This semantics might remind the reader of the proof-number search in game
programming.1) The proof number of a node in a game tree means the number of
nodes that should be traversed for showing that it is a winning node. The proof
number of an AND node is the sum of the proof numbers of its children, while
that of an OR node is the minimum among them.

2

In our previous study,4) we formalized two variants of logics, denoted by L
and L→ in this paper. The former includes negation, conjunction, disjunction,
diamond, square, µ, and ν operators. The latter is an extension of the former,
obtained by adding the implication operator. Unlike ordinary semantics, dis-
tributive and De Morgan laws are not satisfied in N∞ semantics. We designed
model-checking algorithms for the logics according to the semantics, and imple-
mented them efficiently.

On the basis of this semantics, various properties of a Kripke structure can
be expressed using formulae. For example, formula µX(p ∨ ♢(1 ∧ X)) expresses
the length of the shortest path to a state at which p is true, where 1 is an
atomic formula that is always interpreted as 1 ∈ N∞. As another example,
formula [o](¬q ∨ 1) expresses the number of states at which q is true in the
entire Kripke structure, where o is a special modality termed as the universal
modality. We had outlined the possibility of application of the expressive power
in two directions: shape analysis10) in the style of 11), and data flow analysis for
compiler optimization in the style of 8).

In this work, we investigate the satisfiability problem with respect to N∞

semantics. The satisfiability problem in ordinary semantics, that is, the problem
of deciding, for given closed formula φ, whether there is a Kripke structure K
and its state s such that K, s |= φ, is decidable and the complexity is EXPTIME-
complete.3) In N∞ semantics, the truth value of a formula is represented as
an element of N∞. Let us denote the truth value of formula φ at state s of
Kripke structure K by JφKK(s). Then, the satisfiability problem in N∞-semantics
version is obtained by replacing K, s |= φ in the above-mentioned definition withJφKK(s) = 0. A different version would be obtained using JφKK(s) < ∞, but we
found that both versions can be treated in a similar way.

There are two main results. One is that the satisfiability problem of L is
decidable. We show this by reducing the problem to the satisfiability problem
of the ordinary modal µ-calculus. To achieve this, for formula φ of L, we define
its translation, namely, formulae tr(φ, 0) and tr(φ,∞) of the ordinary µ-calculus
such that Jtr(φ, 0)KK(t) = 0 is realized (i.e., φ is satisfiable) if and only if tr(φ, 0) is
satisfiable and Jtr(φ,∞)KK(t) = ∞ is realized if and only if tr(φ,∞) is satisfiable.
The difficulty lies in the case of tr(νXφ,∞). In ordinary semantics, refuting νXφ

(recall that ∞ means falsehood) amounts to finding a witness that φ is false with
finitely many repetitions. This no longer holds for N∞ semantics, because an
infinite sum of finite values (truth) can be infinite (falsehood). Nevertheless, we
can prove that the value of νXφ is infinite if and only if the following conditions
are satisfied: (1) the claim that the value may be infinite cannot be refuted
through infinitely many repetitions and (2) a witness that shows the value must
be positive can be obtained after finitely many repetitions. Using this fact, we
successfully define the translation and prove that it has the desired properties,
although we need to solve problems such as handling of negations and infinite
branchings in a Kripke structure.

The other main result is that the satisfiability problem of L→ is undecidable.
We prove this by reducing Post’s correspondence problem9) of alphabet {0, 1}.
The main reason for this undecidability is that one can compare truth values of
two formulae. In fact, we show that the following extension of the satisfiability
problem for L is undecidable: for two given closed formulae φ and ψ of L, decide
whether there is a Kripke structure K and its state s such that JφKK(s) = JψKK(s).
The undecidability result for L→ directly follows from this fact.

The remainder of this paper is organized as follows. In Section 2, the variants of
the modal µ-calculus considered in this paper are introduced and N∞-semantics
is defined. In Section 3, the undecidability results are displayed. In Section 4, we
define the translation and prove its correctness to show the decidability results.
Section 5 concludes the paper.

2. Preliminaries

2.1 Syntax and semantics
Let PS be the set of propositional symbols and PV be the set of propositional

variables. The formulae of language L is defined as follows:
φ ::= p | 1 | X | ¬φ | φ ∨ φ | φ ∧ φ | ♢φ | ¤φ | µXφ | νXφ

where p ∈ PS and X ∈ PV. All occurrences of X in µXφ and νXφ must be
positive in φ. That is, the number of negations of which the occurrence is in the
scope must be even.
K = (T,R, L) is a Kripke structure for L if T is a set, R ⊆ T × T , and

L : PS×T → N∞. The set of Kripke structure for L is denoted by KSL. T , R, and

3

JpKρ(t) = L(p, t) J1Kρ(t) = 1JXKρ(t) = ρ(X, t)

J¬ψKρ(t) =

(

0 if JψKρ(t) = ∞
∞ if JψKρ(t) < ∞

Jψ1 ∨ ψ2Kρ(t) = min(Jψ1Kρ(t), Jψ2Kρ(t))Jψ1 ∧ ψ2Kρ(t) = Jψ1Kρ(t) + Jψ2Kρ(t)J˚ψKρ(t) = min(JψKρ(t′) | (t, t′) ∈ R)J˜ψKρ(t) =
P

(JψKρ(t′) | (t, t′) ∈ R)JµXψKρ(t) = inf{Fα(t) | α ∈ On}, where Fα(t′) = inf{JψKρ[X 7→Fβ](t′) | β < α}JνXψKρ(t) = sup{Fα(t) | α ∈ On}, where Fα(t′) = sup{JψKρ[X 7→Fβ](t′) | β < α}

Fig. 1 the value of formulae

L are written as |K|, K.R, and K.L, respectively. A function ρ : PV×T → N∞ is
called a valuation. Then, for formula φ of L and t ∈ T , the value JφKK,ρ(t) ∈ N∞

of φ at t is given in Figure 1. K and/or ρ are omitted if they are clear from the
context. In the figure, On is the class of ordinal numbers. For function f , f [a 7→ b]
is the function g whose domain is dom(f)∪{a}, and whose values are defined by
g(a) = b and g(x) = f(x) for any x ∈ dom(f) \ {a}.

Note that the distributive law Jφ ∨ (ψ1 ∧ ψ2)K(t) = J(φ ∨ ψ1) ∧ (φ ∨ ψ2)K(t)
does not hold. Also, J¬¤φK(t) = J♢¬φK(t) does not necessarily hold if a state
has infinite successors.

Intuitively, value n ∈ N∞ means true if n < ∞ and ∞ means false. The value
0 ∈ N∞ represents the absolute truth.

Formula false and true are abbreviations for p ∨ ¬p (for some fixed p ∈ PS)
and ¬false, respectively. Clearly, we have JtrueK(t) = 0 and JfalseK(t) = ∞.

Let L→ be the language based on L and expanded by allowing constructing
formula φ → ψ from formulae φ and ψ. Its meaning Jφ → ψK(t) is given as the
least n ∈ N∞ such that JφK(t) + n ≥ JψK(t). Thus, we have J¬φK(t) = Jφ →
falseK(t) in L→.

A formula φ of L is satisfiable if there exists a Kripke structure K for L, its
state t, and valuation ρ such that JφKK,ρ(t) = 0.

We introduce four “abstract” values of N∞: Zer, Fin, Pos, and Inf. Their
meanings are given by γ(Zer) = {0}, γ(Inf) = {∞}, γ(Pos) = N∞ \ {0}, and
γ(Fin) = N∞ \ {∞}. We denote the set of four abstract values by AV, the set
{Zer, Fin} of two less values by AVL, and the set {Pos, Inf} of two greater values
by AVG.

Let a ∈ AV. a closed formula φ of L or L→ is a-satisfiable if there is K ∈ KS(L)
and t ∈ |K| such that JφKK(t) ∈ γ(a). Formula φ is satisfiable if it is Zer-
satisfiable.

Next, we introduce language L′ as follows. The set PS′ of propositional symbols
of L′ is {p0 | p ∈ PS} ∪ {p∞ | p ∈ PS}. The set Mod′ of modality symbols of L′

is {1,∞}. Its formulae are defined by:
φ ::= p′ | X | ¬φ | φ ∨ φ | φ ∧ φ | ⟨m⟩φ | [m]φ | µXφ | νXφ

where p′ ∈ PS′, m ∈ Mod′, and X ranges over the propositional variables.
The semantics of L′ is given by Kripke structures K′ = (S, R′, L′) where S is
a set, R′ : Mod′ → P(S × S), and L′ : PS′ → P(S). The satisfaction relation
K′, s |= φ′ for s ∈ S and formula φ′ of L′ is defined in an ordinary manner.6),14) In
particular, we have all classical relations such as J¬(φ′ ∨ψ′)KK′

= J¬φ′ ∧¬ψ′KK′
,J¬⟨m⟩φ′KK′

= J[m]¬φ′KK′
, or J¬µXφ′KK′

= JνX¬φ′[¬X/X]KK′
, where we writeJφ′KK′

for {s ∈ S | K′, s |= φ′}. The set of Kripke structure for L′ is denoted by
KSL′ .

A formula of L′ is in PNF if the negation symbol only occurs directly in front
of propositional symbols. From the classical relations mentioned above, it is
obvious that for each formula φ of L′, there is a formula ψ in PNF of L′ that is
equivalent to φ, i.e., JφKK′

= JψKK′
for any Kripke structure K′ for L′.

We introduce a few notations. Let φ be a formula of L or L′.
The set of occurrences of subformulae of φ is denoted by SF(φ). For example,

the two occurrences of X in formula φ = X ∧ (p∨X) are treated as two different
members of SF(φ).

The symbol λ is used to stand for either fixed-point operator, µ or ν. If the
binding formula of propositional variable X in a given formula φ is λXψ, we
denote λXψ by BF(X), ψ by BFS(X), and λ by λX . Variable X is called a
µ-variable (resp. ν-variable) if λX = µ (resp. λX = ν). The set of µ-variables
(resp. ν-variables) is denoted by PVµ (resp. PVν). When ψ1 is a subformula of

4

ψ2, we write ψ1 ≤ ψ2. For X, Y ∈ PV, we write X ≼ Y if BF(X) ≤ BF(Y), and
X ≺ Y if X ≼ Y and X ̸= Y .

2.2 The game semantics of the ordinary µ-calculus
Let K′ = (S, R′, L′) be a Kripke structure for L′ and φ0 is a closed formula

of L′ in PNF. We introduce a game played by Player and Opponent, which is
essentially the same as the one defined in 13).

The arena of the game is defined by A = {(φ, s) | φ ∈ SF(φ0), s ∈ S}. Possible
moves at position (φ, s) ∈ A is defined in Table 1. In the table, p is a propositional
symbol and m is a modality symbol. For each propositional variable X in φ0, a
natural number Ω(X) is assigned so that
• Ω(X) is even if and only if λX = ν.
• X1 ≼ X2 =⇒ Ω(X1) ≤ Ω(X2).
Player wins a play if Opponent cannot move or the play is infinite and Ω(X)

is even, where X is the ≺-largest propositional variable that appears infinitely
often in the play (note that such a variable always exist).

The following theorem can be proved in a standard way.
Theorem 1 K, s |= φ0 if and only if (φ0, s) belongs to the winning region of

Player.

3. Undecidability

In this section, we prove that the problem whether two formulae of L can have a
same value is undecidable. From this fact, it directly follows that the satisfiability

Table 1 Possible moves at (φ, s)

φ Turn Possible moves

p
Opponent (if s ∈ L′(p))

none
Player (if s ̸∈ L′(p))

¬p
Opponent (if s ̸∈ L′(p))

none
Player (if s ∈ L′(p))

X Player (BFS(X), s)
ψ1 ∨ ψ2 Player (ψ1, s), (ψ2, s)
ψ1 ∧ ψ2 Opponent (ψ1, s), (ψ2, s)
⟨m⟩ψ Player (ψ, s′) ((s, s′) ∈ R′(m))
[m]ψ Opponent (ψ, s′) ((s, s′) ∈ R′(m))
λXψ Player (ψ, s)

problem of logic L→ is undecidable.
Let us give names to relating problems. FORMEQ is the following prob-

lem: for given formulae φ and ψ of L, decide whether there is a Kripke struc-
ture K = (S,R, L) and s ∈ S such that JφKK(s) = JψKK(s). FORMLEQ is
the problem obtained from FORMEQ by replacing JφKK(s) = JψKK(s) withJφKK(s) ≤ JψKK(s).

We will show that both FORMEQ and FORMLEQ are undecidable by reduc-
ing Post’s correspondence problem PCP9) of alphabet {0, 1} to these problems.
As an intermediate problem, we introduce EQFIN, which is to decide, for given
formulae φ1, . . . , φk and ψ1, . . . , ψk of L, whether there is a Kripke structure
K = (S, R, L) and s ∈ S such that JφiKK(s) = JψiKK(s) < ∞ for i = 1, . . . , k.

Let m be a natural number and φ be a formula in L. We define formula m

by 0 = true and m = n ∧ 1, where n = m − 1. Formula m ∗ φ is defined
by 0 ∗ φ = true and m ∗ φ = ((m − 1) ∗ φ) ∧ φ. We have JmK(t) = m andJm ∗ φK(t) = m · (JφK(t)).

Lemma 2 EQFIN can be reduced to FORMEQ and FORMLEQ.
Proof Assume that formulae φi and ψi are given for i = 1, . . . , k.

Let φ′
i = (2 ∧ φi) ∨ (¬φi) and ψ′

i = (2 ∧ ψi) ∨ (1 ∧ ¬ψi). Then, we haveJφ′
iK(t) = Jψ′

iK(t) if and only if JφiK(t) = JψiK(t) < ∞.
Let φ′ be (φ′

1 ∧ψ′
1)∧ · · · ∧ (φ′

k ∧ψ′
k) and ψ′ be 2 ∗ (φ′

1 ∨ψ′
1)∧ · · ·∧2 ∗ (φ′

k ∨ψ′
k).

Clearly Jφ′K(t) ≤ Jψ′K(t) if and only if Jφ′K(t) = Jψ′K(t) if and only if for all
i = 1, . . . , k, Jφ′

iK(t) = Jψ′
iK(t), which is equivalent to JφiK(t) = JψiK(t) < ∞.

Our remaining task is to reduce PCP to EQFIN. Assume that finite number
of pairs (α1, β1), . . . , (αn, βn) of words from alphabet {0, 1} are given. We need
to decide whether there exists a non-empty sequence i1, . . . , im of indices such
that αi1 · · ·αim = βi1 · · ·βim . Without loss of generality, we can assume that
(αi, βi) ̸= (αj , βj) if i ̸= j.

We introduce a few definitions and notations. A formula φ is a condition if
for any Kripke structure K = (S,R, L) and s ∈ S, JφKK(s) is either 0 or ∞. A
sequence of states (si)i is a path if (si, si+1) ∈ R for all i such that si and si+1

are defined.
For a word α, its reversed word is denoted by α. We define c(α) by the value

5

Geq(p, 0) = true Geq(p, x + 1) = ˚(¬¬p ∧ Geq(p, x))

Eq(p, x) = Geq(p, x) ∧ ¬Geq(p, x + 1)

NumTiles = νX(¬pT ∨ (¬¬pT ∧ 1 ∧ ˜X))

LenTiles = νX(¬pT ∨ (¬¬pT ∧ 1 ∧ ˚X))

Tile(α, β) = ¬¬pT ∧ ¬pE ∧ Eq(pc
α, c(α)) ∧ Eq(pd

α, d(α)) ∧ Eq(pc
β , c(β)) ∧ Eq(pd

β , d(β))

StrA = µX((1 ∧ ¬¬pE) ∨
Wn

i=1(Tile(αi, βi) ∧ c(αi) ∧ (d(αi) ∗ ˚X)))

StrB = µX((1 ∧ ¬¬pE) ∨
Wn

i=1(Tile(αi, βi) ∧ c(βi) ∧ (d(βi) ∗ ˚X)))

Fig. 2 Formulae used in EQFIN

of α considered as a binary number, and d(α) by 2|α|, where |α| is the length of
α. For example, c(10110) = 011012 = 13 and d(10110) = 25 = 32. Note that α

is uniquely determined from c(α) and d(α).
We introduce several formulae to describe properties of sequences of the pairs.

Their definitions are given in Figure 2, where pT, pE, pc
α, pd

α, pc
β , and pd

β are
different fixed propositional symbols, p ∈ PS, and x ∈ N.

Their intended meanings are as follows: Geq(p, x) has value 0 if there is a path
of length x starting from an adjacent state to the current state. Eq(p, x) has
value 0 if x is the maximum length of such paths. They are conditions.

In a Kripke structure, some nodes represents a pair (αi, βi). Propositional
symbol pT is used to mark states, They form a sequence, and pE is used to
mark the end of the sequence. We need to express that these states actually
form a sequence, i.e., they do not branch or form a cycle. For this purpose, we
use Formulae NumTiles and LenTiles. Consider an unwound tree of the states
that hereditarily satisfy pT beginning at state s. Then, JNumTilesK(s) equals to
the number of the nodes of the tree and JLenTilesK(s) is the depth of the tree.
Therefore, the states with pT form a finite list if and only if JNumTilesK(s) =JLenTilesK(s) < ∞.

When JTile(α, β)K(s) = 0 for a state s, we consider that s represents a pair
(α, β). Note that for any state s, there is at most one such pair (α, β).JStrAK(s) = 1 if JpEK < ∞. On the other hand, if JpEK(s) = ∞ andJTile(αi, βi)K(s) = 0, JStrAK(s) = c(αi) + d(αi) · min{JStrAK(s′) | (s, s′) ∈
R}). Therefore, the |αi| least significant bits of the binary expression of

Fig. 3 Kripke structure for EQFIN

number JStrAK(s) is αi. Suppose that states s1, . . . , sm, sEND forms a list,
1 ≤ i1, . . . , im ≤ n, JTile(αij , βij)K(sj) = 0 for j = 1, . . . , m, JpEK(sEND) = 0,JpTK(s) = ∞ if s ̸∈ {s1, . . . , sm}, and JpEK(s) = ∞ if s ̸= sEND. Then, the binary
expression of JStrAK(s1) is 1αim · · ·αi1 and that of JStrBK(s1) is 1βim · · ·βi1 .

Lemma 3 PCP can be reduced to EQFIN.
Proof We only give a proof sketch here, based on the intended meanings of
the formulae mentioned above.

As an instance of EQFIN, we consider the following pairs of formulae:
(φ1, ψ1) = (NumTiles, LenTiles), (φ2, ψ2) = (StrA, StrB), and (φ3, ψ3) =
(¬pE, true).

Suppose that there is a Kripke structure K = (S, R, L) and s ∈ S such thatJφlKK(s) = JψlKK(s) < ∞ for l = 1, 2, 3. From the equation for l = 1, we
have a sequence of states s1, . . . , sm that satisfy pT and that forms a list. From
the equation for l = 2, for each j = 1, . . . , m, there is a unique index ij such
that JTile(αij

, βij
)K(sj) = 0, and we have 1αim

· · ·αi1 = 1βim
· · ·βi1 . Therefore,

αi1 · · ·αim = βi1 · · ·βim . Finally, the equation for l = 3 guarantees m ≥ 1.
If there is a sequence of indices i1, . . . , im such that αi1 · · ·αim = βi1 · · ·βim , we

can construct a Kripke structure K = (S,R, L) and s ∈ S such that JφiKK(s) =JψiKK(s) < ∞, as illustrated in Figure 3, where L is defined as follows: for p = pT

and p = pE, L(p, s) = 0 if p is marked in the circle for s in the figure; otherwise,
L(p, s) = ∞. For y ∈ {c, d}, ξ ∈ {α, β}, j ∈ {1, . . . , m}, and k ∈ N, L(py

ξ , sk
j) = 0

if k ≤ y(ξij
); otherwise, L(py

xi, sk
j) = ∞. Using the intended meanings of the

6

formulae, one can see that JφlK(s1) = JψlK(s1) < 0 holds for l = 1, 2, 3.

By combining Lemmas 2 and 3, we have:
Theorem 4 Problems FORMEQ and FORMLEQ are undecidable.
Corollary 5 The satisfiability problem of L→ is undecidable.

Proof FORMLEQ can be reduced to the satisfiability problem of L→: for
given formulae φ and ψ of L, φ → ψ is a formula in L→ and JφK(t) ≤ JψK(t) is
equivalent to Jφ → ψK(t) = 0.

4. Decidability

In this section, we show that the satisfiability problem of L is decidable, namely,
for given closed formula φ of L, we can decide whether there exists K ∈ KSL

for and t ∈ |K| such that JφKK(t) = 0. We define a translation from formulae
of L to those of L′ such that the given formula is satisfiable if and only if the
translated formula is satisfiable. This gives a decision procedure for L, because
L′ is decidable.

4.1 Translation
Figure 4 provides the formal definition of our translation; however, we will start

with intuitive view.
For a given closed formula φ, we essentially define two formulae of L′, tr(φ,Zer)

and tr(φ, Inf). The former expresses that JφK(t) = 0, the latter JφK(t) = ∞. We
introduce two more translations tr(φ,Pos) and tr(φ, Fin). They are equivalent
to ¬tr(φ, Zer) and ¬tr(φ, Inf), respectively.

We consider propositional symbols p0 and p∞ as expressions of JpK(t) = 0 andJpK(t) = ∞, respectively. With this in mind, the first line of Figure 4 can be
read naturally. (Let us ignore the third argument V of tr() presently.) The
translations of 1 are also natural.

Let us skip the propositional variable X. The translations of negation, disjunc-
tion, and conjunction are natural from the definitions in Figure 1. For example,Jφ1 ∧ φ2K = Jφ1K + Jφ2K > 0 if and only if Jφ1K > 0 or Jφ2K > 0.

For diamonds and boxes, two modalities introduced in L′ play a role in distin-
guishing situations with finite successors from those with infinite successors. For
example, consider tr(¤ψ, Fin), which means J¤ψK(t) < ∞. It is not sufficient

tr(p, Zer, V) = p0 ∧ ¬p∞, tr(p, Pos, V) = ¬p0 ∨ p∞
tr(p, Inf, V) = ¬p0 ∧ p∞, tr(p, Fin, V) = p0 ∨ ¬p∞
tr(1, Zer, V) = tr(1, Inf, V) = false
tr(1, Fin, V) = tr(1, Pos, V) = true
tr(X, a, V) = tr(BF(X), a, V)
tr(¬ψ, Zer, V) = tr(¬ψ, Fin, V) = tr(ψ, Inf, V [(X, a) 7→ 3 | V (X, a) = 2])
tr(¬ψ, Pos, V) = tr(¬ψ, Inf, V) = tr(ψ, Fin, V [(X, a) 7→ 3 | V (X, a) = 2])

tr(ψ1 ∨ ψ2, a, V) =

(

tr(ψ1, a, V) ∨ tr(ψ2, a, V) if a ∈ AVL

tr(ψ1, a, V) ∧ tr(ψ2, a, V) if a ∈ AVG

tr(ψ1 ∧ ψ2, a, V) =

(

tr(ψ1, a, V) ∧ tr(ψ2, a, V) if a ∈ AVL

tr(ψ1, a, V) ∨ tr(ψ2, a, V) if a ∈ AVG

tr(˚ψ, a, V) =

(

⟨1⟩tr(ψ, a, V) ∨ ⟨∞⟩tr(ψ, a, V) if a ∈ AVL

[1]tr(ψ, a, V) ∧ [∞]tr(ψ, a, V) if a ∈ AVG

tr(˜ψ, a, V) =

(

[1]tr(ψ, a, V) ∧ [∞]tr(ψ, Zer, V) if a ∈ AVL

⟨1⟩tr(ψ, a, V) ∨ ⟨∞⟩tr(ψ, Pos, V) if a ∈ AVG

tr(λXψ, a, V) =

8

>

<

>

:

Xa if V (X, a) = 1 or V (X, a) = 2

Xneg if V (X, a) = 3

the following are applied if V (X, a) = 0

tr(µXψ, a, V) =

(

µXa tr(ψ, a, V ′[(X, a) 7→ 1]) if a ∈ AVL

νXa tr(ψ, a, V ′[(X, a) 7→ 1]) if a ∈ AVG

tr(νXψ, a, V) =

(

νXa tr(ψ, a, V ′[(X, a) 7→ 1]) if a = Zer

µXa tr(ψ, a, V ′[(X.a) 7→ 1]) if a = Pos

tr(νXψ, Fin, V) =
νXnegµXFin (tr(ψ, Fin, V ′[(X, Fin) 7→ 2]) ∨ tr(νXψ, Zer, V ′[(X, Fin) 7→ 2]))

tr(νXψ, Inf, V) =
µXnegνXInf (tr(ψ, Inf, V ′[(X, Inf) 7→ 2]) ∧ tr(νXψ, Pos, V ′[(X, Inf) 7→ 2]))

where V ′ = V [(Y, a) 7→ 0 | Y ≺ X, a ∈ AV]

Fig. 4 Translation

that all successors t′ of t satisfy JψK(t′) < ∞. In addition, the value of JψK(t′)
must be zero except for finitely many successors t′. This observation leads to the
definition of tr(¤ψ, Fin) = [1]tr(ψ, Fin) ∧ [∞]tr(ψ, Zer). Similar consideration
should apply to tr(¤ψ, Inf).

The first attempt of the definition of tr(λXψ, a) would be λXtr(ψ, a) for a ∈
AVL and λ′Xtr(ψ, a) for a ∈ AVG, where we define µ′ = ν and ν′ = µ.

7

One problem is that the value a may be changed during the recursion.
For example, consider tr(φ, Zer) for φ = µX(¤X). The translation becomes
µX(⟨1⟩tr(X, Zer) ∨ ⟨∞⟩tr(X, Pos)). It is all right to replace tr(X, Zer) with X,
but tr(X, Pos) cannot be replaced with X. Instead, it should be replaced with
tr(φ, Pos). To achieve this, we introduce the third parameter V of tr(). V is
a function from PV × AV to {0, 1, 2, 3}. Let us denote the set of such functions
by V. V records binding of variables in the following manner. V is initialized
by VI, which is defined by VI(X, a) = 0 for all X and a. When tr(λXψ, a, V)
is processed, V (X, a) is set to 1. Moreover, V (Y, ·) is reset to 0 for all proper
subformulae Y of X, to ensure that the ≺-order of the translated formula is con-
sistent with that of the original formula. At a later stage, when tr(X, a, V) is
processed, it is replaced with Xa if V (X, a) = 1, else the translation continues
with tr(BF(X), a, V).

Another and the most essential problem is how to handle cases tr(νXψ, Fin, V)
and tr(νXψ, Inf, V). We only examine the former, because the latter is merely
its negation. As an example, let φ1 = νX(p ∧ ♢X) and K1 = (T, R, L) be the
Kripke structure defined by T = {tn | n ∈ N}, R = {(tn, tn+1) | n ∈ N},
and L(tn) = 1 for all n ∈ N. The corresponding Kripke structure K′

1 for L′ is,
although we have not yet defined it, (N, R′, L′), where R′(1) = R, R′(∞) = ∅,
and L′(p0) = L′(p∞) = ∅.

Let φ′
1 be the result of the naive translation of tr(φ1, Fin): φ′

1 = νX((p0 ∨
¬p∞) ∧ ([1]X ∨ [∞]X)). We have Jφ1K(t0) = ∞ but t0 |= φ′

1. Here, Jφ1K(t0)
can be calculated by “developing” φ1, Jφ1K(t0) = L(p, t0) + Jφ1K(t1) = L(p, t0) +
L(p, t1) + Jφ1K(t2) = · · · . This observation suggests that the value Jφ1K(t) must
become zero after the formula is developed finitely many times, if Jφ1K(t) < ∞.
Thus, we have an improved (but still incorrect) definition: tr1(νXψ, Fin, V) =
µXFin(tr(ψ, Fin, V ′) ∨ tr(νXψ, Zer, V ′)), for some appropriately specified V ′.

The remaining problem is caused by the negation. For example, let φ2 =
νX(p∧♢¬¬X). In this case, Jφ2KK1(t0) = 1 < ∞ holds, but K′

1, t0 ̸|= tr1(φ2, Fin).
A double negation “resets” the value to 0. Therefore, if a development path passes
negation symbols for infinitely many times, the value remains finite. To realize
this observation, we introduce another propositional variable Xneg and put νXneg

at the beginning of the translated formula. When the variable X is processed

during the translation, we replace it with Xneg if X is in the scope of a negation
operator; otherwise, we use XFin, which is bound by the µ operator. To realize
this, we first set V (X, Fin) to 2, and when it encounters a negation symbol, the
value is changed to 3.

The detailed definition of tr(ψ, a, V) is given in Figure 4. We define tr(ψ, a) =
tr(ψ, a, VI). The translation process always terminates, because the value of
V (X, a) for ≺-larger variable continuously becomes non-zero. For details, refer
to Lemma 15 in Appendix.

We conclude this section by stating a lemma, which can be proved by checking
the definition. Let φ be a formula in L and a ∈ AV. For propositional variable X

in φ, the set of propositional variables in the form of Xneg or Xb for some b ∈ AV
appearing in φ′ = tr(φ, a) is denoted by C(X). Such a propositional variable
can be bound two or more times in χ. We consider variables bound by different
fixed-point operators are different variables.

Lemma 6
(1) tr(¬φ, a, V) ≡ ¬tr(φ, a, V).
(2) tr(φ, Pos, V) ≡ ¬tr(φ,Zer, V) and tr(φ, Fin, V) ≡ ¬tr(φ, Inf, V).
(3) If X and Y are propositional variables in φ, Y ≺ X, Y ′ ∈ C(Y), and

X ′ ∈ C(X), then Y ′ does not occur freely in BF(X ′).
4.2 Outline of Equi-satisfiability Proof
Let φI be a closed formula in L and aI ∈ AV. The following is the main theorem

of Section 4.
Theorem 7 The following are equivalent.

(1) φI is aI-satisfiable.
(2) tr(φI, aI) is satisfiable.

To prove this theorem, we introduce a relation between (K, t) and (K′, s) where
K ∈ KSL, t ∈ |K|, K′ ∈ KSL′ , and s ∈ |K′|, called a (φI, aI)-simulation (Sec-
tion 4.5). If this relation exists, φI and tr(φI, aI) behaves similarly on K and K′,
respectively. In particular, we prove the following lemma (Section 4.6).

Lemma 8 Let K ∈ KSL, K′ ∈ KSL′ , tI ∈ |K|, sI ∈ |K′|, and aI ∈ AV. If a
(φI, aI)-simulation between (K, tI) and (K′, sI) exists, then we haveJφKK(tI) ∈ γ(aI) ⇐⇒ K′, sI |= tr(φI, aI).
Therefore, the following two lemmas are sufficient to prove Theorem 7.

8

Lemma 9 If φI is aI-satisfiable, then there exist K ∈ KSL, K′ ∈ KSL′ , tI ∈
|K|, and sI ∈ |K′| such that JφIKK(tI) ∈ γ(aI) and there is a (φI, aI)-simulation
between (K, tI) and (K′, sI).

Lemma 10 If closed formula ψ of L′ is satisfiable, then there exist K ∈ KSL,
K′ ∈ KSL′ , tI ∈ |K|, and sI ∈ |K′| such that K′, sI |= ψ and there is a (φI, aI)-
simulation between (K, tI) and (K′, sI).

4.3 Intermediate Interpretation
Proving Lemma 8 using induction on the construction of φ is apparently dif-

ficult from the nature of the translation. Instead, we plan to use the game
expression for K′ reviewed in Section 2.2. We need some mechanism that can
be used on K as a counterpart of the game on K′. For this purpose, we use
sequences of ordinal numbers, which show the indices of Fα used in the definition
of JφK (Figure 1). As there are two or more fixed-point operators that appear in
a formula, we need sequences of ordinal numbers.

For φ ∈ SF(φI), we define FVφ = {X ∈ PV | φ < BF(X)} and fv(φ) = |FVφ|.
For X ∈ PV, we denote fv(BF(X)) by idx(X). For example, let φI = µX(p ∨
νY νZ(X∧Y ∧Z∧q)). Then, FVp = {X}, FVq = {X,Y, Z}, fv(p) = 1, fv(q) = 3,
idx(X) = 0, idx(Y) = 1, and idx(Z) = 2. Thus, idx(X) is the nesting depth of
its binding fixed-point operator.

Let Seq be the class of finite sequences of ordinal numbers, Seql = {ξ ∈ Seq |
len(ξ) = l} for l ∈ N, and Seqφ = Seq fv(φ) for φ ∈ SF(φI). An ordinal number α

is considered as a sequence of length one, i.e., an element of Seq1. For ξ ∈ Seq,
its l-th element is denoted by ξ(l). For ξ, ξ′ ∈ Seq, their concatenation is denoted
by ξ : ξ′. If n ≥ len(ξ), the prefix of ξ with length n is denoted by ξ ¹ n.

Let K = (T, R, L) be a Kripke structure for L. For φ ∈ SF(φI), ξ ∈ Seqφ, and
t ∈ T , we define ⟨φ⟩ξ(t) ∈ N∞ as in Figure 5. It is the value JφK(t) at its ξ’th
iteration. For example, if we use φI mentioned above and let φ = X ∧ Y ∧Z ∧ q,
then ⟨φ⟩α:β:γ(t) is the value of JφKρ(t) at α’th iteration for X, β’th iteration for
Y , and γ’th iteration for Z.

Let φ ∈ SF(φI) and ξ ∈ Seq. If idx(X) < len(ξ) holds for all propositional
variable X that freely occurs in φ, then for any extension ξ′ ∈ Seqφ of ξ, the value
of ⟨φ⟩ξ′ is identical. We denote this value by ⟨φ⟩ξ. This notation is frequently
used especially when φ = X and len(ξ) = idx(X) + 1.

⟨p⟩ξ(t) = L(p, t), ⟨1⟩ξ(t) = 1
⟨X⟩ξ:α:ξ′(t) =

(

inf{⟨BFS(X)⟩ξ:β(t) | β < α} if λX = µ

sup{⟨BFS(X)⟩ξ:β(t) | β < α} if λX = ν
where len(ξ) = idx(X)

⟨¬ψ⟩ξ(t) =

(

0 if ⟨ψ⟩ξ(t) = ∞
∞ if ⟨ψ⟩ξ(t) < ∞

⟨ψ1 ∨ ψ2⟩ξ(t) = min(⟨ψ1⟩ξ(t), ⟨ψ2⟩ξ(t))
⟨ψ1 ∧ ψ2⟩ξ(t) = ⟨ψ1⟩ξ(t) + ⟨ψ2⟩ξ(t)
⟨˚ψ⟩ξ(t) = min(⟨ψ⟩ξ(t′) | (t, t′) ∈ R)
⟨˜ψ⟩ξ(t) =

P

(⟨ψ⟩ξ(t′) | (t, t′) ∈ R)
⟨µXψ⟩ξ(t) = inf{⟨ψ⟩ξ:α(t) | α ∈ On}
⟨νXψ⟩ξ(t) = sup{⟨ψ⟩ξ:α(t) | α ∈ On}

Fig. 5 Definition of ⟨φ⟩ξ(t)

The next lemma describes a relation between JφK and ⟨φ⟩ξ. For a proof, refer
to Appendix.

Lemma 11
(1) Assume that φ ∈ SF(φI), ξ ∈ Seqφ, and ρ is a valuation such that ρ(X) =

⟨X⟩ξ for any X ∈ FVφ. Then, JφKρ = ⟨φ⟩ξ.
(2) JφIK = ⟨φI⟩ϵ, where ϵ is the empty sequence.
(3) There is an ordinal number κ′ such that for any ordinal number κ ≥ κ′,

λXψ ∈ SF(φI), t ∈ T , and ξ ∈ Seqφ, the following holds.
⟨λXψ⟩ξ(t) = ⟨ψ⟩ξ:κ(t) = ⟨X⟩ξ:κ(t).

We fix an ordinal number κ′ that satisfies Lemma 11 (3) and let κ = κ′ + 1.
Hereafter in this paper, κ refers to this ordinal number.

4.4 W -sequence
Although we will use the game expression of ordinary semantics on K′, we do

not formally define games or strategies on K. Instead, we introduce sequences of
quadruple, called W -sequence. Intuitively, a W -sequence represents a “play” of
the game in which Player obeys a standard “strategy.”

For φ ∈ SF(φI) and l < fv(φ), let X(φ, l) be the propositional variable X ∈
FVφ such that idx(X) = l.

Let K = (T,R, L) be a Kripke structure for L, φ ∈ SF(φI), ξ ∈ Seqφ, α ∈ On,

9

and t ∈ T . We define NuLim(ξ, φ) as the set of natural numbers l < fv(φ)
that satisfy the following conditions: (1) φ is positive in BF(X), where X =
X(φ, l), (2) λX = ν, (3) ξ(l) is a limit ordinal number, and (4) ξ(l) < κ. When
NuLim(ξ, φ) ̸= ∅, we denote its least element by pni(ξ, φ) (principal nu-limit
index). If NuLim(ξ, φ) = ∅, we define pni(ξ, φ) = −1. For l < fv(φ), we denote
by ξ{l 7→ α} sequence η ∈ Seqφ defined by η ¹ l = ξ ¹ l, η(l) = α, and
η(l′) = κ for l′ > l. The value of φ at t is strictly continuous on ξ, written by
SCont(φ, ξ, t), if
• l = pni(ξ, φ) ≥ 0,
• ⟨φ⟩ξ(t) = sup{⟨φ⟩ξ{l 7→α}(t) | α < ξ(l)} = ∞, and
• ⟨φ⟩ξ{l 7→α}(t) < ∞ for all α < ξ(l).

For t ∈ T , we define Suc(t) = {t′ ∈ T | (t, t′) ∈ R}.
The information we need to keep track of is the member of the following set:

W ={(φ, ξ, t, a) ∈ SF(φI) × Seq × T × AV
| ξ ∈ Seqφ and ⟨φ⟩ξ(t) ∈ γ(a)}.

A relation RW on W is the set of pairs (w, w′) ∈ RW that satisfy one of the
conditions in Figure 6, where w = (φ, ξ, t, a) and w′ = (φ′, ξ′, t′, a′). Condition
FP(λ, ξ̂) that appears in the figure is defined in Figure 7. Intuitively, the relation
consists of the “move of Player that obeys the standard strategy” and all possible
“moves of Opponent.”

For w ∈ W , the set {w′ ∈ W | (w, w′) ∈ RW } is also denoted by Suc(w). For
w ∈ W , we write w = (w.φ,w.ξ, w.t, w.a).

A finite or infinite sequence w = (wi)i of W is a W-sequence if (wi, wi+1) ∈ RW

for each i such that wi and wi+1 are defined.
For any infinite W -sequence w, it is clear that there is X ∈ PV such that

w(i).φ = X for infinitely many i. We call the ≺-largest such propositional
variable the principal variable of the sequence.

Let w be a W -sequence. It is clear that for each propositional variable X,
{w(i).a | w(i).φ = X} is either a subset of AVL or a subset of AVG. If it is a
non-empty subset of AVL, we call X an AVL variable. If it is a non-empty subset
of AVG, we call X an AVG variable. The set of AVL (AVG, resp.) variables is
denoted by PVL (PVG, resp.).

Lemma 12 Let ((φi, ξi, ti, ai) | i ∈ N) be an infinite W -sequence, X be its

• φ = ¬φ′, ξ = ξ′, t = t′, and either a ∈ AVL and a′ = Inf or a ∈ AVG and a′ = Fin.
• Either of the following two

– φ = φ′ ∨ ψ or φ = ψ ∨ φ′, t = t′, a = a′

– φ = ˚φ′, (t, t′) ∈ R, a = a′

and both of the following:
– If a = Inf, l = pni(ξ, φ) ≥ 0, and α0 = min{α | ⟨φ′⟩ξ{l7→α}(t

′) = ∞} < ξ(l), then
ξ′ = ξ{l 7→ α0}; otherwise, ξ′ = ξ.

– If a ∈ AVL, then ⟨φ⟩ξ(t) = ⟨φ′⟩ξ′(t′).
• φ = φ′ ∧ ψ or φ = ψ ∧ φ′, ξ = ξ′, t = t′, and a = a′. Furthermore, if a = Inf and

SCont(φ, ξ, t), then SCont(φ′, ξ′, t′).
• φ = ˜φ′, (t, t′) ∈ R, either a = a′, (a, a′) = (Inf, Pos), or (a, a′) = (Fin, Zer),

and:
– If a ̸= Inf, then ξ = ξ′.
– If a = Inf, then

∗ If SCont(φ, ξ, t) holds, then
· If there is t′′ ∈ Suc(t) such that SCont(φ′, ξ, t′′) and ⟨φ′⟩ξ(t′′) = ∞, then

a′ = Inf, ξ = ξ′, and SCont(φ′, ξ, t′).
· Otherwise, a′ = Pos and ξ′ = ξ{l 7→ α0}, where l = pni(ξ, φ) and α0 =

min{α | ⟨φ′⟩ξ{l 7→α}(t
′) > 0}. Note that in this case we have α0 < ξ(l)

because SCont(φ, ξ, t) holds.
∗ Otherwise,

· ξ = ξ′.
· If there is t′′ ∈ Suc(t) such that ⟨φ′⟩ξ(t′′) = ∞, then a′ = Inf.
· Otherwise, a′ = Pos.

• φ = λXφ′ and FP(λ, ξ).
• φ = X, φ′ = BFS(X), and FP(λX , ξ — idx(X)).

Fig. 6 Relation RW

principal variable, and l = idx(X).
(1) there is i0 ∈ N such that for any i ≥ i0, ξi ¹ (l + 1) = ξi0 ¹ (l + 1).
(2) X ̸∈ PVµ ∩ PVL.
(3) If X ∈ PVν ∩ PVG, then, there is i0 such that for all i ≥ i0, φi = X

implies
• ai+1 = Inf
• α = ξi(l) is a limit ordinal number.
• ⟨X⟩(ξi�l):β(ti) < ∞ for all β < α.

(4) If λX = ν and X is an AVG-variable, then there are only finitely many i

such that φi = ¬φi+1.

10

• t = t′

• If either λ = µ, a = Zer, or a = Pos, then a = a′.
• If λ = ν and a = Inf, then a′ = Inf or a′ = Pos.
• If λ = ν, a = Fin, and ⟨φ⟩ξ̂(t) > 0, then a′ = Fin.
• If λ = ν, a = Fin, and ⟨φ⟩ξ̂(t) = 0, then a′ = Zer.

• If either λ = µ and a ∈ AVG or λ = ν and a ∈ AVL, then ξ′ = ξ̂ : κ.
• If λ = µ and a ∈ AVL, then ξ′ = ξ̂ : α,

where α = min{α | ⟨φ′⟩ξ̂:α(t′) = ⟨φ⟩ξ̂(t)}.
• If λ = ν and a ∈ AVG,

– If (a, a′) = (Inf, Pos) and 0 ≤ l = pni(ξ̂, φ) ≤ idx(X), then ξ′ = ξ̂{l 7→ α}, where
α = min{α | ⟨φ′⟩ξ̂{l7→α}(t) ∈ γ(a′)}.

– Otherwise, ξ′ = ξ̂ : α,
where α = min{α | ⟨φ′⟩ξ̂:α(t′) ∈ γ(a′)}.

Fig. 7 Condition FP(λ, ξ̂)

(5) If λX = ν, X is an AVL variable, and there are only finitely many i

such that φi = ¬φi+1, then there are only finitely many i such that
⟨φi⟩ξi(ti) > 0.

For a proof, refer to Appendix. This lemma can be considered as an N∞-
semantics version of Theorem 1. In fact, if we define W -sequence with ordinary
semantics in a similar way, Theorem 1 corresponds to (1) + (2) + (3′), where
(3′) is a simple statement “X ̸∈ PVν ∩ PVG.”

4.5 (φ, a)-simulation
In this section, we define (φ, a)-simulation. Note that L′ has two modalities 1

and ∞. We need to take care so that a transition labeled with ∞ in K′ should
correspond to infinitely many transitions in K, while a transition labeled with
1 in K′ should correspond to finitely many transitions in K. This consideration
leads to the following definition.

Let tI ∈ T , sI ∈ S, and aI ∈ AV. A relation Q ⊆ T × S is a (φI, aI)-simulation
between (K, tI) and (K′, sI) if the following conditions are satisfied.
(1) (tI, sI) ∈ Q.
(2) If (t, s) ∈ Q, then for p ∈ PS,

• L(p, t) = 0 ⇐⇒ s ∈ L′(p0) \ L′(p∞)
• L(p, t) = ∞ ⇐⇒ s ∈ L′(p∞) \ L′(p0)

(3) If (t, s), (t′, s′) ∈ Q, then (t, t′) ∈ R ⇐⇒ (s, s′) ∈ R′(1) ∪ R′(∞).
(4) If (t, s) ∈ Q and w = (φ, ξ, t, a) is a descendant of wI = (φI, ϵ, tI, aI); i.e.,

if there is a finite W -sequence (wi | 0 ≤ i ≤ i0) such that w0 = wI and
wi0 = w; then the following are satisfied:
• If either φ = ♢ψ and a ∈ AVL or φ = ¤ψ and a ∈ AVG, then there

exist w′ ∈ W and s′ ∈ S such that (w′.t, s′) ∈ Q, (s, s′) ∈ R′(1)∪R′(∞),
(w,w′) ∈ RW , and if (a,w′.a) = (Inf,Pos) then (s, s′) ∈ R′(∞).

• If either φ = ♢ψ and a ∈ AVG or φ = ¤ψ and a ∈ AVL, then for
each s′ ∈ S such that (s, s′) ∈ R′(1)∪R′(∞), there exists w′ ∈ W such
that (w′.t, s′) ∈ Q and (w,w′) ∈ RW. Moreover, if (s, s′) ∈ R′(∞) and
a = Fin, then we can take w′ so that w′.a = Zer.

With this definition, we can prove Lemmas 9 and 10. For a proof, refer to
Appendix.

4.6 Strategy
Assume that Q is a (φI, aI)-simulation between (K, tI) and (K′, sI), andJφIKK(tI) ∈ γ(aI).
The following lemma can be proved using the results obtained so far. For a

detailed proof, refer to Appendix.
Lemma 13 There are a strategy σ for Player in the µ-calculus game at

(tr(φI, aI), sI) and a W -sequence (wi)i that satisfy the following conditions. We
write wi = (φi, ξi, ti, ai).
(1) If Player obeys σ, for each index i of the W -sequence, (tr(φi, ai, V), si)

(for some V ∈ V) appears as a position in the play. Moreover, if the play
is finite, the W sequence is finite and the last φi is either a propositional
symbol or 1.

(2) (ti, si) ∈ Q for each index i.
Lemma 14 Strategy σ is a winning strategy for Player.

Proof If the play is finite, Player wins because wi ∈ W . Therefore we can
assume that the play is infinite. Thus, (wi)i∈N is an infinite W -sequence. Let X

be the principal variable of the sequence, and X ′ be the ≺-largest propositional
variable in tr(φI, aI) that appears infinitely often in the play. By Lemma 6 (3),
X ′ ∈ C(X). What we need to show is that X ′ is a ν-variable.

Let us assume that X ′ is a µ-variable and infer a contradiction. By the def-

11

inition of the translation, X ′ is either of the following: (1) X is a µ-variable
and X ′ = Xa, where a ∈ AVL, or (2) X is a ν-variable and (2-a) X ′ = XPos,
(2-b) X ′ = XFin, or (2-c) X ′ = Xneg. Case (1) is not possible by Lemma 12 (2).
Cases (2-a) is eliminated by Lemma 12 (3). Lemma 12 (5) excludes case (2-b).
Finally, case (2-c) is impossible by Lemma 12 (4).

Proof of Lemma 8 The direction from left to right follows from Theorem 1
and Lemma 14. Then, the other direction follows from Lemma 6 (2).

This completes the proof of Theorem 7.

5. Conclusions

We proved the decidable and undecidable results on the modal µ-calculus with
N∞-semantics. The logic is decidable if it does not contain the implication
operator. We prove this result by defining a translation tr(φ) of formula φ such
that the satisfiability of φ in N∞-semantics is equivalent to the satisfiability
of tr(φ) in ordinary semantics. On the other hand, the satisfiability problem
becomes undecidable if the logic contains the implication operator.

In future, we plan to strengthen our decidability result to the problem in the
form of JφKK(t) = n for given formula φ and n ∈ N∞. It may be difficult
to extend the translation to this case, because we need to handle complicated
conditions. Applying the standard technique of alternating automata7) is another
possibility.

Another direction is the study of the game expression of N∞ semantics. We
have tried several versions that extend the µ-calculus game for the ordinary
semantics, but they were not sufficiently strong for a proof of the correctness of
our translation. Therefore, we explicitly used the ordinal numbers, making the
proof less intuitive. An appropriate formulation of the semantics using the game
terminology is desirable.

References

1) Allis, L.V., vander Meulen, M. and vanden Herik, H.J.: Proof-number search,
Artif. Intell., Vol.66, No.1, pp.91–124 (1994).

2) Baccelli, F., Cohen, G., Olsder, G. J. and Quadrat, J.-P.: Synchronization and
Linearity: An Algebra for Discrete Event Systems, John Wiley & Sons (1992).

3) Emerson, E.A. and Jutla, C.S.: Tree Automata, Mu-Calculus and Determinacy
(Extended Abstract), 32nd Annual Symposium on Foundations of Computer Sci-
ence, IEEE, pp.368–377 (1991).

4) Ikarashi, D., Tanabe, Y., Nishizawa, K. and Hagiya, M.: Modal µ-calculus on min-
plus algebra N∞, 10th Workshop on Programming and Programming Languages
(PPL2008), Japanese Society on Software Science and Technology, pp. 216–230
(2008).

5) Kameyama, Y., Kinoshita, Y. and Nishizawa, K.: Weighted Kripke Structures and
Refinement of Models, 23rd Conference of Japan Society for Software Science and
Technology (2006).

6) Kozen, D.: Results on the Propositional µ-Calculus, Theoret. Comput. Sci, Vol.27,
No.3, pp.333–354 (1983).

7) Kupferman, O. and Vardi, M.Y.: Weak Alternating Automata and Tree Automata
Emptiness, 30th Annual ACM Symposium on the Theory of Computing, pp.224–233
(1998).

8) Lacey, D., Jones, N.D., Wyk, E.V. and Frederiksen, C.C.: Compiler Optimization
Correctness by Temporal Logic, Higher-Order and Symbolic Computation, Vol.17,
No.3, pp.173–206 (2004).

9) Post, E.L.: A variant of a recursively unsolvable problem, Bull. Amer. Math. Soc.,
Vol.52, No.4, pp.264–268 (1946).

10) Sagiv, M., Reps, T. and Wilhelm, R.: Parametric Shape Analysis via 3-valued
Logic, ACM Transactions on Programming Languages and Systems, Vol.24, No.3,
pp.217–298 (2002).

11) Sekizawa, T., Tanabe, Y., Yuasa, Y. and Takahashi, K.: MLAT: A Tool for Heap
Analysis Based on Predicate Abstraction by Modal Logic, IASTED International
Conference on Software Engineering (SE 2008), pp.310–317 (2008).

12) Simon, I.: Limited Subsets of a Free Monoid, 19th Annual Symposium on Foun-
dations of Computer Science, IEEE, pp.143–150 (1978).

13) Wilke, T.: Alternating Tree Automata, Parity Games, and Modal µ-Calculus, Bull.
Soc. Math. Belg., Vol.8, No.2, pp.359–391 (2001).

14) Zappe, J.: Modal µ-Calculus and Alternating Tree Automata, Automata, Logics,
and Infinite Games (Grädel, E., Thomas, W. and Wilke, T., eds.), Lecture Notes
in Computer Science, Vol.2500, Springer, pp.171–184 (2001).

12

Appendix

In the appendix, proofs that were omitted in the previous sections are given.
A.1 Translation
Lemma 15 The translation process always terminates.

Proof We fix a closed formula φ of L. Let A = SF(φ)×V. Let us denote the
set of propositional variables that occur in φ by PVφ. For V ∈ V and X ∈ PVφ,
{a ∈ AV | V (X, a) ̸= 0} is denoted by F (V,X).

We define a relation R on A as follows: ((ψ′, V ′), (ψ, V)) ∈ R if and only if
either of the following holds:
• There is X ∈ PVφ such that F (V ′, X)) F (V,X) and for any Y ∈ PVφ such

that Y ≻ X, F (V ′, Y) = F (V, Y).
• For any X ∈ PVφ, F (V ′, X) = F (V,X) and ψ′ < ψ.
It is clear that the relation R is well-founded since PVφ, AV, and SF(φ) are all

finite.
In all defining equations of the translation in Figure 4, if tr(ψ, a, V) appears

in the left hand side and tr(ψ′, a′, V ′) appears in the right hand side, we have
((ψ′, V ′), (ψ, V)) ∈ R except for one equation, tr(X, a, V) = tr(BF(X), a, V).
For this equation, however, when we go one step further, i.e., when we re-
place the right hand side tr(BF(X), a, V) with its definition, for any occurrence
tr(ψ′, a′, V ′) in the right hand side, we have ((ψ′, V ′), (X, V)) ∈ R as well. There-
fore, the translation process terminates.

A.2 Intermediate Interpretation
Proof of Lemma 11

(1) We prove this by induction on the construction of φ. The only nontrivial
part is µXφ and νXφ. We show only the former, the latter can be proved in a
similar way.

Take the series of functions (Fα)α as in the definition of JµXφKρ (Figure 1). By
induction on α, we can show that Fα = ⟨X⟩ξ:α and Fα+1 = ⟨φ⟩ξ:α. Therefore,JµXφKρ(t) = inf{Fα(t) | α ∈ On} = inf{⟨φ⟩ξ:α(t) | α ∈ On} = ⟨µXφ⟩ξ(t).

(2) directly follows from (1).

(3) It follows from the fact that there is κ′ ∈ On such that for any κ ≥ κ′,
t ∈ T , φ ∈ φI, and valuation ρ, JφKρ(t) = Fκ′(t), together with the proof of (1).

A.3 W -sequence
We call index l < fv(φ) is increasing if either X = X(φ, l) is positive in φ and

λX = ν or X is negative in φ and λX = µ; otherwise we call l decreasing.
Lemma 16 Assume t ∈ T , φ ∈ SF(φI), and ξ, η ∈ Seqφ such that either

ξ(l) ≤ η(l) or ξ(l) ≥ κ and η(l) ≥ κ for any increasing index l , and either
ξ(l) ≥ η(l) or ξ(l) ≥ κ and η(l) ≥ κ for any decreasing index l. Then, we have
⟨φ⟩ξ(t) ≤ ⟨φ⟩η(t).
Proof Can be proved by induction on the lexicographical order on Seq. (If ξ

is an extension of η, we consider xi is smaller than η.)

Lemma 17 Assume w = (φ, ξ, t, a) ∈ W .
(1) Suc(w) ̸= ∅.
(2) Assume w′ ∈ Suc(w). If φ is in the form of ¬ψ, then a ∈ AVL ⇐⇒ w′.a ∈

AVG. Otherwise, a ∈ AVL ⇐⇒ w′.a ∈ AVL
(3) If either φ = ψ1 ∨ ψ2 and a ∈ AVG or φ=ψ1 ∧ ψ2 and a ∈ AVL, then there

exist w′
1, w

′
2 ∈ Suc(w) such that w′

k.φ = ψk for k = 1, 2.
(4) If either φ = ♢ψ and a ∈ AVG or φ = ¤ψ and a ∈ AVL, then for any

t′ ∈ Suc(t) there exists w′ ∈ Suc(w) such that w′.t = t′.
(5) If φ = ¤ψ and a ∈ AVG, then either of the following holds:

• There exists w′ ∈ Suc(w) such that w′.a = a.
• a = Inf and for any finite subset T ′ of Suc(t), there exists w′ ∈ Suc(w)

such that w′.t ∈ Suc(t) \ T ′ and w′.a = Pos.
(6) If φ = ¤ψ and a = Fin, then there is a finite subset T ′ of Suc(t) such that

for all t′ ∈ Suc(t) \ T ′ there exists w′ ∈ Suc(w) such that w′.t = t′ and
w′.a = Zer.

(7) If either φ = X and λX = ν or φ = νXψ, and if a = Inf, then for each
a′ ∈ {Inf, Pos}, there is w′ ∈ Suc(w) such that w′.a = a′.

(8) Assume w′ = (φ′, ξ′, t′, a′) ∈ Suc(w), a = Inf, l = pni(ξ, φ) ≥ 0, and
SCont(φ, ξ, t). Then, φ is not in the form of ¬ψ. Moreover, either of the
following holds:

13

• ξ ¹ l = ξ′ ¹ l and ξ(l) > ξ′(l).
• a′ = Inf, l = pni(ξ′, φ′), and SCont(φ′, ξ′, t′).

Proof Each case can be checked by checking the corresponding definitions.

Lemma 18 Let ((φi, ξi, ti, ai))i be a W -sequence, X ∈ PV, and l = idx(X).
(1) If X ∈ (PVµ ∩ PVG) ∪ (PVν ∩ PVL), and X ∈ FVφi , then then ξi(l) = κ.
(2) If φi = X, then ξi(l) ≥ ξi+1(l). Moreover, if either

• X ∈ PVµ ∩ PVL

• X ∈ PVν ∩PVG and either ⟨X⟩ξi(ti) < ∞ or ξi(l) is a successor ordinal
number.

then, ξi(l) > ξi+1(l).
(3) Assume i < i′ and there is no j (i ≤ j < i′) such that either of the following

holds:
• φj = Y ∈ PV, X ≼ Y .
• There is l′ ≤ l such that ξj+1 = ξj{l′ 7→ α} for some α < ξj(l′).

Then, ξi ¹ (l + 1) = ξi′ ¹ (l + 1).
Proof
(1) Clear from the definition of RW .
(2) If X ∈ (PVµ ∩ PVG) ∪ (PVν ∩ PVL), this follows from (1).

Assume X ∈ PVµ∩PVL. Note we also have ai ∈ AVL. Since ⟨X⟩ξi(ti) ∈ γ(ai),
we have ∞ > ⟨X⟩ξi(ti) = inf{⟨BFS(X)⟩ξ̂:β(ti) | β < ξi(l)}, where ξ̂ = ξi ¹ l.
Therefore ξi(l) > 0 and there is β < ξi(l) such that ⟨BFS(X)⟩ξ̂:β(ti) = ⟨X⟩ξi(ti).
By the definition of RW , we have ξi+1(l) < ξi(l).

Assume X ∈ PVν ∩ PVG. In the same argument as above, we have
0 < ⟨X⟩ξi(ti) = sup{⟨BFS(X)⟩ξ̂:β(ti) | β < ξi(l)}. If ⟨X⟩ξi(ti) < ∞ or
ξi(l) is a successor, there is β < ξ(l) such that ⟨BFS(X)⟩ξ̂:β(ti) = ⟨X⟩ξi(ti),
therefore ξi+1(l) < ξi(l). Otherwise, ⟨BFS(X)⟩ξ̂:ξi(l)

(ti) ≥ ⟨X⟩ξ̂:ξi(l)
(ti) =

sup{⟨BFS(X)⟩ξ̂:β(ti) | β < ξi(l)} = ∞. Therefore, ξi+1(l) ≤ ξi(l).
(3) Clear from the definition of RW .

Proof of Lemma 12 (1) Let i1 be an index such that for all i ≥ i1, if
φi = Y ∈ PV then Y ≼ X. We will show that there are only finitely many
i such that ξi+1 = ξi{l′ 7→ α} for some α < ξi(l′) and some l′ ≤ l. Then
the conclusion follows from Lemma 18, since (ξi(l))i becomes a non-increasing

sequence of ordinal numbers.
Assume that there are l′ ≤ l and infinitely many i such that ξi+1 = ξi{l′ 7→ α}

for some α < ξi(l′). Let l′ be the least such number. Then, again by Lemma 18,
there is i2 ∈ N such that (ξi(l′) | i2 ≤ i ∈ N) is a non-increasing sequence of
ordinal numbers and there are infinitely many i such that ξi(l′) > ξi+1(l′), which
is impossible.

Proof of Lemma 12 (2) and (3) By (1), there is i0 ∈ N such that for all
i ≥ i0, ξi ¹ (l + 1) = ξi0 ¹ (l + 1).
(2) Take i ≥ i0 and φi = X. If X ∈ PVµ ∩ PVL, by Lemma 18 (2), ξi(l) >

ξi+1(l). A contradiction.
(3) Assume λX = ν and X is an AVG variable.

Take i ≥ i0 such that φi = X. It is sufficient to show that each of ai+1 = Pos,
α is a successor, and ⟨X⟩ξ̂:β(ti) = ∞ implies ξi+1(l) < ξi(l).

First, assume ai+1 = Pos. Let ξ̂ = ξi ¹ l. Since ai ∈ AVG, we have
sup{⟨φi+1⟩ξ̂:α(ti) | α < ξi(l)} = ⟨X⟩ξi(ti) ∈ γ(ai). Therefore there is α < ξi(l)
such that ⟨φi+1⟩ξ̂:α(ti) > 0 regardless ai = Pos or ai = Inf. Therefore
ξi+1(l) < ξi(l).

Second, if ξi(l) is a successor, ξi+1(l) < ξi(l) by Lemma 18 (2).
Third, assume ⟨X⟩ξ̂:β(ti) = ∞ for some β < α. By the argument in the

above two paragraphs, we can assume α is limit and ai = ai+1 = Inf. Therefore
⟨φi+1⟩ξ̂:β = ⟨X⟩ξ̂:β+1 = ⟨X⟩ξ̂:α = ∞. Hence ξi+1(l) ≤ β < α = ξi(l).

Proof of Lemma 12 (4) By (1) and (3), we can take i0 ∈ N, a limit ordinal
number α, and ξ̂ ∈ SeqBF(X) such that φi0 = X and for all i ≥ i0,
• φi = Y ∈ PV =⇒ Y ≼ X.
• ξi ¹ (l + 1) = ξ̂ : α.
• If φi = X, then ai = ai+1 = Inf and ⟨X⟩ξ̂:β(ti) < ∞ for all β < α.
We show the following by induction on i ≥ i0.

(a) ai = Inf.
(b) l = pni(ξi, φi) and SCont(φi, ξi, ti).
(c) φi ̸= ¬φi+1

First note that (c) follows from (b): if φi = ¬φi+1, then ∞ > ⟨φi⟩ξi{l 7→β}(ti) =
⟨¬φi⟩ξi{l 7→β}(ti), therefore ⟨φi⟩ξi{l 7→β}(ti) = 0. Hence sup{⟨φi⟩ξi{l 7→β}(ti) | β <

14

α} = 0.
Initial case i = i0 is clear.
Case φi = φi+1∨ψ or φi = ψ∨φi+1. Since l ∈ NuLim(ξi, φi) and ξi ¹ (l+1) =

ξi+1 ¹ (l + 1), l = pni(ξi+1, φi+1) and min{β | ⟨φi+1⟩ξ{l 7→β}(ti) = ∞} = α.
Therefore ξi+1 = ξi and ⟨φi+1⟩ξi+1{l 7→β}(ti+1) < ∞ for β < α. On the other
hand, sup{⟨φi+1⟩ξi+1{l 7→β}(ti+1) | β < α} ≥ sup{⟨φi⟩ξi{l 7→β}(ti) | β < α} = ∞

Case φi = ♢φi+1 can be shown in a similar argument.
Case φi = φi+1 ∧ ψ or φi = ψ ∧ φi+1 easily follows from the definition of RW .
Case φi = ¤φi+1. (a): Since ξi+1(l) = ξi(l), ai+1 cannot be Pos. (b) easily

follows from the definition of RW .
Case φi = Y ∈ PV. If Y = X, the conclusion follows immediately. Assume

Y ≺ X. If ai+1 = Pos, then ξi+1 = ξ̂{l 7→ α}, where ξ̂ = ξi ¹ idx(Y) and α

is the least α that satisfies ⟨φi+1⟩ξ̂{l 7→α}(ti) > 0. Since ⟨φi+1⟩ξ̂{l 7→ξ(l)}(ti) = ∞,
ξi+1(l) < ξi(l), which is impossible. Therefore ai+1 = Inf. Then, ξi+1 = ξ̂ : β for
some β, and (b) for i + 1 can be checked easily.

Case φi = λY ψ. In this case, Y ≺ X holds. A similar argument to the above
case can be applied.

Proof of Lemma 12 (5) Let i0 ∈ N such that φi0 = X and for all i ≥ i0,
φi ̸= ¬φi+1, and if φi = Y ∈ PV then Y ≼ X. Let i0, i1, . . . be the enumeration
of the indices i ≥ i0 such that φi = X. Let l = idx(X).

Let ni = ⟨φi⟩ξi(ti). By checking the definition of the relation RW , we can show
that ai ∈ AVL and ni ≥ ni+1 for all i ≥ i0. Therefore there is K ∈ N and c ≥ 0
such that ni = c for all i ≥ iK .

Note that ξi(l) = κ for any i ≥ iK since λX = ν and ai ∈ AVL. Let α be
an ordinal number. For any i, j ≥ iK , ξi{l 7→ α} is an extension of ξj{l 7→
α} or ξj{l 7→ α} is an extension of ξi{l 7→ α}. Also, we have ⟨φi⟩ξi(ti) ≥
⟨φi⟩ξi{l 7→α}(ti) for any i ≥ iK by Lemma 16.

We claim that ⟨φi⟩ξi{l 7→α}(ti) = 0 for all i ≥ iK and for all ordinal number α.
First, let α = 0. By definition of ⟨·⟩·, we have ⟨φik

⟩ξik
{l 7→0}(tik

) = 0. Then, we
can use induction on i with reverse direction (case i depends on case i + 1) to
show ⟨φi⟩ξi{l 7→0}(ti) for i ≥ iK .
• Case φi = ψ0 ∨ ψ1. Either ψ0 or ψ1 is φi+1. Since ⟨φi+1⟩ξi+1{l 7→0}(ti+1) = 0

by the induction hypothesis, we have ⟨φi⟩ξi{l 7→0}(ti) = min{⟨ψj⟩ξi{l 7→0}(ti) |
j = 0, 1} = 0.

• Case φi = ψ0 ∧ ψ1. Let ψj = φi+1 and ψ = ψ1−j . We have ⟨ψ⟩ξi(ti) = 0,
since ∞ > c = ⟨φi⟩ξi(ti) = ⟨φi+1⟩ξi(ti)+ ⟨ψ⟩ξi(ti) = c+ ⟨ψ⟩ξi(ti). Therefore,
⟨ψ⟩ξi{l 7→0}(ti) = 0. Since ⟨φi+1⟩ξi{l 7→0}(ti) = 0 by the induction hypothesis,
we have ⟨φi⟩ξi{l 7→0}(ti) = 0 + 0 = 0.

• Case φi = ♢ψ and φi = ¤ψ. A similar argument as in the previous cases
can be applied.

• Case φi = Y ∈ PV. Note that Y ≺ X since i ≥ iK . Since φi+1 = BFS(Y),
the induction hypothesis is ⟨BFS(Y)⟩ξi+1{l 7→0} = 0. By Lemma 11 (3), we
have ⟨Y ⟩ξi{l 7→0} = ⟨BFS(Y)⟩ξi+1{l 7→0}

• Case φi = λY ψ. Note that Y ≺ X since i ≥ iK . Since φi+1 = BFS(ψ),
the induction hypothesis is ⟨ψ⟩ξi+1{l 7→0} = 0. By Lemma 11 (3), we have
⟨λY ψ⟩ξi{l 7→0} = ⟨ψ⟩ξi+1{l 7→0}.

Next, let α = β + 1. Since φik
= X, φik+1 = BFS(X), λX = ν, ξik

{l 7→
β + 1} = (ξik

¹ l) : (β + 1) : κ : · · · , and ξik+1{l 7→ β} = (ξik
¹ l) : β,

we have ⟨φik
⟩ξik

{l 7→β+1}(tik
) = 0 using the induction hypothesis on α, namely,

⟨φik+1⟩ξik+1{l 7→β}(tik+1) = 0. Then, ⟨φi⟩ξi{l 7→β+1}(ti) = 0 for i ≥ iK can be
shown by the same argument as in the case α = 0. Finally, let α be a limit
ordinal number. ⟨φik

⟩ξik
{l 7→α}(tik

) = 0 follows from the induction hypothesis on
α, and for other i ≥ iK , ⟨φi⟩ξi{l 7→α}(ti) = 0 can be checked in the same argument.
This establishes the claim.

By taking i = iK and α = κ, we have c = ⟨φiK
⟩ξiK

{l 7→κ}(tiK
) = 0, since

ξiK{l 7→ κ} = ξiK .

A.4 (φ, a)-simulation
We prove Lemmas 9 and 10 using a series of lemmas.
Lemma 19 Assume K = (T, R,L) is a Kripke structure for L, tI ∈ T , aI ∈

AV, and JφIKK(tI) ∈ γ(aI). Then, there is a tree-shape Kripke structure K1 =
(T1, R1, L1) for L such that JφIKK1(t0) ∈ γ(aI), where t0 is the root of the tree
K1.
Proof This lemma be shown by an ordinary unwinding argument.

For t ∈ T and w ∈ W such that w.t = t, we call w′ ∈ W a t-descendant of w

15

if there is a finite W -sequence (wi | i ≤ i ≤ i0) such that w0 = w, wi0 = w′ and
wi.t = t for 0 ≤ i ≤ i0.

Lemma 20 Assume that K = (T,R, L) be a Kripke structure for L, t ∈ T ,
and w = (φ0, ξ0, t, a0) ∈ W . Then, there exist only finitely many t-descendants
of w.
Proof We construct a tree so that an element of W is assigned to each node
of the tree.

Initial step: (φ0, ξ0, t, a0) is assigned to the root node. The root node is open.
Succeeding steps: for each open leaf node, let w be the assigned element of W

and let Z = {w′ ∈ W | (w, w′) ∈ RW }. For each w′ ∈ Z, we extend the node
with a new leaf node, which w′ is assigned. If w′ appear in one of its ancestors,
the node is closed, otherwise it is open.

Since every element of W that satisfies the condition of this lemma appears as
an assigned element of the tree, what we need to show is that the tree is finite.
By checking the definition of RW , it can be easily shown that the tree is finitely
branching. By König’s lemma, it is sufficient to show that there is no infinite
branch.

Suppose that there is an infinite branch of the tree. Let (φi, ξi, t, ai) be
the assigned element of W to the i-th level. Since this is a W -sequence, by
Lemma 12 (1), there is i0 ∈ N such that for any i ≥ i0, ξi ¹ (l +1) = ξi0 ¹ (l +1),
where l = idx(X) and X is the principal variable of the W -sequence. Let i0, i1, . . .

be the enumeration of i such that i ≥ i0 and φi = X. Then, for all k ∈ N,
ξik+1 = ξi0 ¹ (l +1) since the length of ξik+1 is l +1. Since there are only finitely
many φ and a that can appear in a W -sequence, that means there is some i < j

such that (φi, ξi, t, ai) = (φj , ξj , t, aj), therefore the branch must be closed at
(φj , ξj , t, aj), a contradiction.

Lemma 21 For any tree-shape Kripke structure K = (T, R,L) for L (we
denote its root by tI) and aI ∈ AV, there exist a Kripke structure K′ = (S, R′, L′)
for L′, sI ∈ S, and a (φI, aI)-simulation Q between (K, tI) and (K′, sI).
Proof We construct K′ in the shape of a tree. A function h : S → T is
simultaneously constructed and we define Q = {(h(s), s) | t ∈ T}. Let W be the
set of descendants of wI = (φI, ϵ, tI, aI). A finite subset Z(s) of W is assigned to

each node s of the tree. For all w ∈ Z(s), w.t = h(s).
Initial step: we start with the root node sI. We define h(sI) = tI and Z(sI) =

{wI}.
Succeeding steps: let s be a leaf node, Z = Z(s), and t = h(s). Let
• Φ♢ be the set of SF(φ) in the form of ♢ψ,
• Φ� be the set of SF(φ) in the form of ¤ψ,
• Z ′ be the set of t-descendants of some w ∈ Z,
• ZD = {w ∈ Z ′ | either w.φ ∈ Φ♢ and w.a ∈ AVL or w.φ ∈ Φ� and w.a ∈

AVG}, and
• ZB = {w ∈ Z ′ | either w.φ ∈ Φ♢ and w.a ∈ AVG or w.φ ∈ Φ� and w.a ∈

AVL}.
If φ = ♢ψ or φ = ¤ψ, we denote ψ by φ⃗. By Lemma 20, ZD and ZB are finite.
For each w1 = (φ1, ξ1, t, a1) ∈ ZD, we create a new leaf node s′ and extend s

with s′. Let ψ1 = −→φ1.
(a) If there exists w1 ∈ Suc(w1) such that w1.a = a1, we put (s, s′) in R′(1).
Let t′ = w1.t. By Lemma 17, for each w ∈ ZB, there exists w ∈ Suc(w) such that
w.t = t′ and w.a = a.
(b) Otherwise, we put (s, s′) in R′(∞). Let Z ′

B = {w ∈ ZB | w.a = Fin}. For
each w ∈ Z ′

B, let T (w) be the finite subset of Suc(t) guaranteed by Lemma 17,
i.e., for all t′ ∈ Suc(t) \ T (w), there exists w ∈ Suc(w) such that w.t = t′ and
w.a = Zer. Let T ′ =

∪
w∈Z′

B
T (w). Since Z ′

B is finite, so is T ′. Therefore, by
Lemma 17, there exists w1 ∈ Suc(w1) such that w1.t ∈ Suc(t)\T ′ and w1.a = Pos.
Let t′ = w1.t. For w ∈ ZB \Z ′

B, take w ∈ Suc(w) such that w.t = t′ and w.a = a,
guaranteed by Lemma 17.

In both cases, We define h(s′) = t′, and Z(s′) = {w | w ∈ {w1} ∪ ZB}.
This completes the construction. The labeling function is defined by L′(s) =

{p0} if L(p, h(s)) = 0, L′(s) = {p∞} if L(p, h(s)) = ∞, and L′(s) = ∅ if
0 < L(p, h(s)) < ∞.

Conditions from (1) to (3) of (φI, aI)-simulation can be checked easily.
It can be easily shown that if (t, s) ∈ Q, w′ = (φ, ξ, t, a) ∈ W is a descendant

of wI, and φ ∈ Φ♢ ∪ Φ�, then w′ ∈ Z ′. Note that h is one-to-one because K is a
tree.

Using this fact, condition (4) can also be checked.

16

Proof of Lemma 9 Clear from Lemmas 19 and 21.

Lemma 22 For any closed satisfiable formula χ in L′, there is a Kripke struc-
ture K′ = (S, R′, L′) in the shape of a finitely branching tree that satisfies χ at
its root. I.e.,
• (S, R′(1) ∪ R′(∞)) forms a tree.
• K′, sI |= χ, where sI is the root of the tree.
• For any s, {s′ ∈ S | (s, s′) ∈ R′(1) ∪ R′(∞)} is finite.
• R′(1) ∩ R′(∞) = ∅.

Proof A tree-shape Kripke structure K′′ = (S′′, R′′, L′′) that satisfies χ can
be built by an ordinary unwinding argument. Let σ be a memoryless winning
strategy of Player for χ. Strategy σ can be formulated as a partial function on
SF(χ)×S′′, and contains both information for Player and Opponent. Remove all
transitions (s, s′) ∈ R′′ such that there is no φ ∈ SF(χ) such that (φ, s) ∈ dom(σ)
and σ(φ, s) = s′. This does not alter the winning regions of Player and Opponent,
and for each s ∈ S′′, only finitely many s′ remains since SF(χ) is finite.

Lemma 23 For any Kripke structure K′ = (S,R′, L′) for L′ in the shape of
a finitely branching tree, sI ∈ S, and aI ∈ AV, there exist a Kripke structure
K = (T, R,L) for L, tI ∈ T , and a (φI, aI)-simulation Q between (K, tI) and
(K′, sI).
Proof For m ∈ {1,∞}, let Sm = {s ∈ S | there exists ŝ such that (ŝ, s) ∈
R(m)}. Then, {{sI}, S1, S∞} is a partition of S. Also, for i ∈ N, let Si be the
set of elements of S whose depth is i: S0 = {sI}, Si+1 = {s ∈ S | there is ŝ ∈ Si

such that (ŝ, s) ∈ R′(1) ∪ R′(∞)}.
We construct T from S by adding infinitely many copies of elements of S∞.

Formally, let SD = {(s, n) ∈ S × N | n > 0 =⇒ s ∈ Sω}. For d = (s, n) ∈ SD,
we write s = d.S and n = d.N. Then we define T = {t : n → SD | 1 ≤ n ∈ N,
t(i).S ∈ Si, (t(i).S, t(i + 1).S) ∈ R′(1) ∪ R′(∞) for i < n}. The relation is
(t, t′) ∈ R ⇐⇒ dom(t′) = dom(t) + 1 and t′ ¹ dom(t) = t, therefore K is also in
the form of (infinitely-branching) tree. tI is the root of the tree: dom(tI) = 1 and
tI(0) = (sI, 0). For t ∈ T , the S-component of the last element of t is denoted by

s(t), i.e., s(t) = t(dom(t) − 1).S. The labeling function is defined by:

L(t, p) =


0 if s(t) ∈ L′(p0) \ L′(p∞)

∞ else if s(t) ∈ L′(p∞) \ L′(p0)

1 otherwise
Q is defined by (t, s) ∈ Q ⇐⇒ s(t) = s.

Observe that for any t1, t2 ∈ T , φ ∈ SF(φI), and ξ ∈ Seqφ, s(t1) = s(t2) implies
⟨φ⟩ξ(t1) = ⟨φ⟩ξ(t2). This is because Kripke sub-structures K ¹ T1 and K ¹ T2 are
isomorphic, where Tk = {t′ ∈ T | (t, t′) ∈ R∗} for k = 1, 2.

The first three conditions of (φI, aI)-simulation are clearly satisfied. Let us
check the condition (4).

Assume either φ = ♢ψ and a ∈ AVL or φ = ¤ψ and a ∈ AVG. By
Lemma 17 (1), there is w′ ∈ W such that (w,w′) ∈ RW . The conclusion trivially
holds if a = w′.a, so assume (a,w′.a) = (Inf, Pos). By the above observation,
there must be infinitely many successors of t, therefore (s, s′) ∈ R′(∞).

Next, assume s′ ∈ S, (s, s′) ∈ R′(1) ∪R′(∞), and either φ = ♢ψ and a ∈ AVG
or φ = ¤ψ and a ∈ AVL. Then, by Lemma 17 (4), there is w′ ∈ Suc(w) such that
w′.t = h(s′). Clearly, (w′.t, s′) ∈ Q. Moreover, if (s, s′) ∈ R′(∞) and a = Fin,
again, by the above observation, w′.a = Zer.

Proof of Lemma 10 Clear from Lemmas 22 and 23.

A.5 Strategy
Proof of Lemma 13 We construct σ, (wi)i, (si)i, and (Vi)i so that the
position of the game becomes tr(φi, ai, Vi), where wi = (φi, ξi, ti, ai).

As the initial step, we define: w0 = (φ, ϵ, tI, aI), s0 = sI, and V0 = VI.
The succeeding steps are defined as follows, depending on cases. In the following

cases other than φ = ♢ψ or φ = ¤ψ, we take si+1 = si.
Case φi = ¬ψ

We take wi+1 so that wi+1 ∈ Suc(wi) by Lemma 17 (1). In this case, the
current position of the play does not change: tr(φi, ai, Vi) = tr(φi+1, ai+1, Vi).
Case either φi = ψ0 ∨ ψ1 and ai ∈ AVL or φi = ψ0 ∧ ψ1 and ai ∈ AVG

Player’s turn. We take wi+1 ∈ Suc(wi) by Lemma 17 (1) and Player’s move is
(tr(φi+1, ai+1, Vi), si+1).
Case either φi = ψ0 ∨ ψ1 and ai ∈ AVG or φi = ψ0 ∧ ψ1 and ai ∈ AVL

17

Opponent’s turn.
Let k ∈ {0, 1} be the index such that Opponent selects tr(ψk, ai, Vi). We define

φi = ψk. By Lemma 17 (3), we take wi+1 ∈ Suc(wi) such that wi+1.φ = ψk.
Case either φi = ♢ψ and ai ∈ AVL or φi = ¤ψ and ai ∈ AVG

Player’s turn. We take w′ ∈ W and s′ ∈ S in the condition (4) of the definition
of the (φI, aI)-simulation, and let wi+1 = w′ and si+1 = s′. Player’s two succes-
sive moves are (⟨m⟩tr(φi+1, ai+1, Vi), si) and (tr(φi+1, ai+1, Vi), si+1), where m

is such that (si, si+1) ∈ R(m).
Note that this also shows that the play does not terminate in this stage.

Case either φi = ♢ψ and ai ∈ AVG or φi = ¤ψ and ai ∈ AVL
Opponent’s turn.
Let ([m]tr(ψ, a′, Vi), si) and (tr(ψ, a′, Vi), s′) be Opponent’s two successive

moves (s′ ∈ S). We take si+1 = s′. Let m be such that (si, si+1) ∈ R′(m). Since
Q is a (φI, aI)-simulation, there exists w′ ∈ Suc(w) such that (w′.t, si+1) ∈ Q. If
m = ∞ and a = Fin, then w′.a = Zer. We take wi+1 = w′.
Case φi = λXψ or φi = X

When φi = X, we define ψ = BFS(X).
(Subcase 1) If λX = µ or ai ∈ {Zer, Pos}, then tr(φi, ai, Vi) is either Xai or
λ′′Xai

tr(ψ, ai, V) for some V ∈ V, where λ′′ is either µ or ν. In both cases, after
finitely many moves of Player, the position of the play becomes (tr(ψ, ai, V), si)
for some V ∈ V. We take wi+1 ∈ Suc(wi) by Lemma 17 (1). By definition of
RW , we have φi+1 = ψ, ai+1 = ai.
(Subcase 2) If λX = ν and ai = Fin, then tr(φi, ai, Vi) is either XFin, Xneg,
or νXnegµXFin(tr(ψ, Fin, V) ∧ tr(νXψ, Zer, V)) for some V ∈ V. In any of the
cases, after finitely many moves of Player, the position of the play becomes
(tr(ψ, Fin, V) ∧ tr(νXψ, Zer, V), si) for some V ∈ V. This is Player’s turn.
By Lemma 17 (1), we take wi+1 ∈ Suc(wi). By the definition of RW , ai+1

is either Fin or Zer. If ai+1 = Fin, Player moves to (tr(ψ, Fin, V), si), else
to (tr(νXψ, Zer, V), si). In the latter case, again, with finitely many moves of
Player, the position of the play becomes (tr(ψ, Zer, V ′), si) for some V ′ ∈ V.
(Subcase 3) If λX = ν and ai = Inf, then a similar process to Subcase 2 can
be applied. Difference is that after finitely many moves of Player, the position of
the play becomes (tr(ψ, Inf, V) ∧ tr(νXψ, Pos, V), si) for some V ∈ V, which is

an Opponent’s turn. If Opponent chooses tr(ψ, Inf, V), we define a′ = Inf, else
a′ = Pos. By Lemma 17 (7), we take wi+1 ∈ Suc(wi) such that wi+1.a = a′. The
rest of the process can be done in a similar way as in Subcase 2.
Case φi = p

If ai = Zer, the current position of the play is (p0 ∧¬p∞, si), Opponent’s turn.
Since 0 = ⟨p⟩ξi(ti) = L(p, ti) and (ti, si) ∈ Q, we have si ∈ L′(p0) \ L′(p∞).
Therefore regardless Opponent chooses either move, Player wins.

If ai = Pos, the current position is (¬p0 ∨ p∞, si), Player’s turn. Since 0 <

⟨p⟩ξi(ti) = L(p, ti) and (ti, si) ∈ Q, we have either si ∈ L′(p∞) or si ̸∈ L′(p0).
Player’s move is (p∞, si) in the first case, and (¬p0, si) in the second. Thus,
Player wins.

A similar argument shows that Player wins in remaining two cases.
Case φi = 1

Since 1 = ⟨1⟩ξi(ti) ∈ γ(ai), ai is either Fin or Pos. Therefore, the current
position is (true, si), namely, Player wins.

This completes the construction of σ and wi. Now, it should be easy to confirm
that two conditions stated are satisfied.

